|
Wright Brothers
Wilbur Wright
American Inventor
1867-1912 Orville Wright
American Inventor
1871-1948 A selection from THE WRIGHT BROTHERS' AIRPLANE
Narrated by Patrick Lawlor
This file is 8 MB;
running time is 17 minutes
alternate download link
This audio program is copyrighted by Redwood Audiobooks.
Permission is granted to download for personal use only;
not for distribution or commercial use.
We began our active experiments in October, 1900, at Kitty Hawk, North Carolina. Our machine was designed to be flown as a kite, with a man on board, in winds of from fifteen to twenty miles an hour. But, upon trial, it was found that much stronger winds were required to lift it. Suitable winds not being plentiful, we found it necessary, in order to test the new balancing system, to fly the machine as a kite without a man on board, operating the levers through cords from the ground. This did not give the practice anticipated, but it inspired confidence in the new system of balance.
In the summer of 1901 we became personally acquainted with Mr. Chanute. When he learned that we were interested in flying as a sport, and not with any expectation of recovering the money we were expending on it, he gave us much encouragement. At our invitation, he spent several weeks with us at our camp at Kill Devil Hill, four miles south of Kitty Hawk, during our experiments of that and the two succeeding years. He also witnessed one flight of the power machine near Dayton, Ohio, in October, 1904.
We then turned to gliding — coasting down hill on the air — as the only method of getting the desired practice in balancing a machine. After a few minutes' practice we were able to make glides of over 300 feet, and in a few days were safely operating in twenty-seven-mile winds. In these experiments we met with several unexpected phenomena. We found that, contrary to the teachings of the books, the center of pressure on a curved surface traveled backward when the surface was inclined, at small angles, more and more edgewise to the wind. We also discovered that in free flight, when the wing on one side of the machine was presented to the wind at a greater angle than the one on the other side, the wing with the greater angle descended, and the machine turned in a direction just the reverse of what we were led to expect when flying the machine as a kite. The larger angle gave more resistance to forward motion, and reduced the speed of the wing on that side. The decrease in speed more than counterbalanced the effect of the larger angle. The addition of a fixed vertical vane in the rear increased the trouble, and made the machine absolutely dangerous. It was some time before a remedy was discovered. This consisted of movable rudders working in conjunction with the twisting of the wings. The details of this arrangement are given in our patent specifications, published several years ago.
The experiments of 1901 were far from encouraging. Although Mr. Chanute assured us that, both in control and in weight carried per horse-power, the results obtained were better than those of any of our predecessors, yet we saw that the calculations upon which all flying-machines had been based were unreliable, and that all were simply groping in the dark. Having set out with absolute faith in the existing scientific data, we were driven to doubt one thing after another, till finally, after two years of experiment, we cast it all aside, and decided to rely entirely upon our own investigations. Truth and error were everywhere so intimately mixed as to be undistinguishable. Nevertheless, the time expended in preliminary study of books was not misspent, for they gave us a good general understanding of the subject, and enabled us at the outset to avoid effort in many directions in which results would have been hopeless.
To work intelligently, one needs to know the effects of a multitude of variations that could be incorporated in the surfaces of flying-machines. The pressures on squares are different from those on rectangles, circles, triangles, or ellipses; arched surfaces differ from planes, and vary among themselves according to the depth of curvature; true arcs differ from parabolas, and the latter differ among themselves; thick surfaces differ from thin, and surfaces thicker in one place than another vary in pressure when the positions of maximum thickness are different; some surfaces are most efficient at one angle, others at other angles. The shape of the edge also makes a difference, so that thousands of combinations are possible in so simple a thing as a wing.
We had taken up aëronautics merely as a sport. We reluctantly entered upon the scientific side of it. But we soon found the work so fascinating that we were drawn into it deeper and deeper. Two testing-machines were built, which we believed would avoid the errors to which the measurements of others had been subject. After making preliminary measurements on a great number of different-shaped surfaces, to secure a general understanding of the subject, we began systematic measurements of standard surfaces, so varied in design as to bring out the underlying causes of differences noted in their pressures. Measurements were tabulated on nearly fifty of these at all angles from zero to 45 degrees, at intervals of 2 1/2 degrees. Measurements were also secured showing the effects on each other when surfaces are superposed, or when they follow one another.
Some strange results were obtained. One surface, with a heavy roll at the front edge, showed the same lift for all angles from 71/2 to 45 degrees. A square plane, contrary to the measurements of all our predecessors, gave a greater pressure at 30 degrees than at 45 degrees. This seemed so anomalous that we were almost ready to doubt our own measurements, when a simple test was suggested. A weather-vane, with two planes attached to the pointer at an angle of 80 degrees with each other, was made. According to our tables, such a vane would be in unstable equilibrium when pointing directly into the wind; for if by chance the wind should happen to strike one plane at 39 degrees and the other at 41 degrees, the plane with the smaller angle would have the greater pressure, and the pointer would be turned still farther out of the course of the wind until the two vanes again secured equal pressures, which would be at approximately 30 and 50 degrees. But the vane performed in this very manner. Further corroboration of the tables was obtained in experiments with a new glider at Kill Devil Hill the next season. In September and October, 1902, nearly one thousand gliding flights were made, several of which covered distances of over 600 feet. Some, made against a wind of thirty-six miles an hour, gave proof of the effectiveness of the devices for control. With this machine, in the autumn of 1903, we made a number of flights in which we remained in the air for over a minute, often soaring for a considerable time in one spot, without any descent at all. Little wonder that our unscientific assistant should think the only thing needed to keep it indefinitely in the air would be a coat of feathers to make it light!
With accurate data for making calculations, and a system of balance effective in winds as well as in calms, we were now in a position, we thought, to build a successful power-flyer. The first designs provided for a total weight of 600 pounds, including the operator and an eight horsepower motor. But, upon completion, the motor gave more power than had been estimated, and this allowed 150 pounds to be added for strengthening the wings and other parts.
Our tables made the designing of the wings an easy matter; and as screw propellers are simply wings traveling in a spiral course, we anticipated no trouble from this source. We had thought of getting the theory of the screw-propeller from the marine engineers, and then, by applying our tables of air-pressures to their formulas of designing air-propellers suitable for our purpose. But so far as we could learn, the marine engineers possessed only empirical formulas, and the exact action of the screw-propeller, after a century of use, was still very obscure. As we were not in a position to undertake a long series of practical experiments to discover a propeller suitable for our machine, it seemed necessary to obtain such a thorough understanding of the theory of its reactions as would enable us to design them from calculation alone. What at first seemed a simple problem became more complex the longer we studied it. With the machine moving forward, the air flying backward, the propellers turning sidewise, and nothing standing still, it seemed impossible to find a starting-point from which to trace the various simultaneous reactions. Contemplation of it was confusing. After long arguments, we often found ourselves in the ludicrous position of each having been converted to the other's side, with no more agreement than when the discussion began.
It was not till several months had passed, and every phase of the problem had been thrashed over and over, that the various reactions began to untangle themselves. When once a clear understanding had been obtained, there was no difficulty in designing suitable propellers, with proper diameter, pitch, and area of blade, to meet the requirements of the flyer. High efficiency in a screw-propeller is not dependent upon any particular or peculiar shape, and there is no such thing as a "best" screw. A propeller giving a high dynamic efficiency when used upon one machine, may be almost worthless when used upon another. The propeller should in every case be designed to meet the particular conditions of the machine to which it is to be applied. Our first propellers, built entirely from calculation, gave in useful work 66 per cent. of the power expended. This was about one third more than had been secured by Maxim or Langley.
The first flights with the power-machine were made on the 17th of December, 1903. Only five persons besides ourselves were present. These were Messrs. John T. Daniels, W. S. Dough, and A. D. Etheridge of the Kill Devil Life Saving Station; Mr. W. C. Brinkley of Manteo, and Mr. John Ward of Naghead. Although a general invitation had been extended to the people living within five or six miles, not many were willing to face the rigors of a cold December wind in order to see, as they no doubt thought, another flying-machine not fly. The first flight lasted only twelve seconds, a flight very modest compared with that of birds, but it was, nevertheless, the first in the history of the world in which a machine carrying a man had raised itself by its own power into the air in free flight, had sailed forward on a level course without reduction of speed, and had finally landed without being wrecked. The second and third flights were a little longer, and the fourth lasted fifty-nine seconds, covering a distance of 852 feet over the ground against a twenty-mile wind.
A practical flyer having been finally realized, we spent the years 1906 and 1907 in constructing new machines and in business negotiations. It was not till May of this year that experiments (discontinued in October, 1905) were resumed at Kill Devil Hill, North Carolina. The recent flights were made to test the ability of our machine to meet the requirements of a contract with the United States Government to furnish a flyer capable of carrying two men and sufficient fuel supplies for a flight of 125 miles, with a speed of forty miles an hour. The machine used in these tests was the same one with which the flights were made at Simms Station in 1905, though several changes had been made to meet present requirements. The operator assumed a sitting position, instead of lying prone, as in 1905, and a seat was added for a passenger. A larger motor was installed, and radiators and gasolene reservoirs of larger capacity replaced those previously used. No attempt was made to make high or long flights.
In order to show the general reader the way in which the machine operates, let us fancy ourselves ready for the start. The machine is placed upon a single rail track facing the wind, and is securely fastened with a cable. The engine is put in motion, and the propellers in the rear whir.
You take your seat at the center of the machine beside the operator. He slips the cable, and you shoot forward. An assistant who has been holding the machine in balance on the rail, starts forward with you, but before you have gone fifty feet the speed is too great for him, and he lets go. Before reaching the end of the track the operator moves the front rudder, and the machine lifts from the rail like a kite supported by the pressure of the air underneath it. The ground under you is at first a perfect blur, but as you rise the objects become clearer. At a height of one hundred feet you feel hardly any motion at all, except for the wind which strikes your face. If you did not take the precaution to fasten your hat before starting, you have probably lost it by this time. The operator moves a lever: the right wing rises, and the machine swings about to the left. You make a very short turn, yet you do not feel the sensation of being thrown from your seat, so often experienced in automobile and railway travel. You find yourself facing toward the point from which you started. The objects on the ground now seem to be moving at much higher speed, though you perceive no change in the pressure of the wind on your face. You know then that you are traveling with the wind. When you near the starting point, the operator stops the motor while still high in the air. The machine coasts down at an oblique angle to the ground, and after sliding fifty or a hundred feet comes to rest. Although the machine often lands when traveling at a speed of a mile a minute, you feel no shock whatever, and cannot, in fact, tell the exact moment at which it first touched the ground. The motor close beside you kept up an almost deafening roar during the whole flight, yet in your excitement, you did not notice it till it stopped. Our experiments have been conducted entirely at our own expense. In the beginning we had no thought of recovering what we were expending, which was not great, and was limited to what we could afford for recreation. Later, when a successful flight had been made with a motor, we gave up the business in which we were engaged, to devote our entire time and capital to the development of a machine for practical uses. As soon as our condition is such that constant attention to business is not required, we expect to prepare for publication the results of our laboratory experiments, which alone made an early solution of the flying problem possible. More information about Wright Brothers from Wikipedia
More selections (25) in this category: Science
More selections (1) in the iTunes category: Games & Hobbies/Aviation
|
|